		TABLE 11		
In	Vitro Inhibition	OF MOUSE BRAIN	MONOAMINE	Oxidase

		I	Molar con	ncn————	
	10-5	5×10^{-5}	10-4	5×10^{-4}	150 ^a
Test compd					
Iproniazide	37	88	97		1.5
1	32		75	97	2.5
3	49		92	97	1.0
4	61		90	99	0.4
5	56		9 5	10 0	0.6
6	39		87	100	1.7
8	14		51	86	7.0
9	22		72	93	3.5
10	46		87	9.8	1.2
11	17		70	94	4.0
18	65	87	93	100	0.3

^a Couch \times 10⁻⁵ M for 50% inhibition of MAO activity.

of scintillation fluid and the radioactivity was measured. A blank contg boiled enzyme was carried through the entire procedure. The reported results are the averages of replicates and the average variation in the same experiment was $\pm \delta \%$. The I_{10} was derived from a graph of the log concn/per cent inhibition.

Chemistry. I.—The *N*-nitrosoamines were prepd by the method of Hartman and Roll.¹³ HCl was replaced by AcOH, the reaction was carried out under N_2 (HONO is lost by reaction with O_2), and the mixt was heated to 60–70° after the addn of the NaNO₂ soln. The compds were distd and anald, but can be used crude in the redns. The nmr spectra show split Me and CH₂ peaks.

Typical LAH Redn of the N-Nitrosoamine. 1-(m-Chlorobenzyl)-1-methylhydrazine (4).—A suspension of LAH (114 g, 3.0 moles) in anhyd Et₂O (2.5 l.) was heated to a gentle reflux under N₂, and a soln of m-chloro-N-methyl-N-nitrosobenzylamine (268 g, 1.45 moles) in THF (500 ml) was added dropwise over 3-4 hr. H₂ evoln began immediately. The mixt was refluxed overnight, cooled under N₂, and H₂O (120 ml) was added *dropwise* with caution followed by 20% NaOH (90 ml) and H₂O (420 ml). The slurry was filtered, and the filtrate concd and distd to yield 4, 227 g (92%). See Table I for physical constants. The yields in Table I are based on starting nitroso compd.

II.—The benzyl halides were prepd by the reaction of the benzyl alcohol with excess concd HCl, HBr, or with excess SOCl₂ (pyridine catalysis in CHCl₃ or 1,2-C₂H₄Cl₂ soln should be used particularly for ortho-substituted examples—see 7, Table I). If the toluene was the commercial starting material, it was treated with NBS (used crude after removal of the succinimide and CCl₄) or with Br₂ and light. The presence of the α, α -dibromotoluene in the NBS product reduces the yield.

Typical Alkylation of Methylhydrazine with an Ortho-Substituted Benzyl Halide. 1-(o-Chlorobenzyl)-1-methylhydrazine (3).—To a mixt of methyl hydrazine (161 g, 3.5 moles) and anhyd EtOH was added with stirring o, α -dichlorotoluene (161 g, 1.0 mole). The mixt was refluxed 1 hr after the temp began to fall. It was concd in vacuo, made alk (50% NaOH), and extd (Et₂O). The exts were washed with H₂O, dried (Mg-SO₄), concd, and distd to yield 3, 158 g (92%). See Table I for physical characteristics. The yields in Table I are based on the starting alcohol or tohuene with the exception of 3, 20, and 22 where the benzyl chlorides were commercial.

III.—The aroyl chlorides were prepd by the use of $SOCl_2$ on the commercial arom carboxylic acids and were used crude or were commercially available.

Typical Aroylation of Methylhydrazine and LAH Redn of the Resulting Mixt. 1-(*m*-Methoxybenzyl)-1-methylhydrazine (9). —A mixt of methylhydrazine (170 g, 3.7 moles) and H₂O (680 g) was cooled to 0° and with stirring a soln of crude *m*-methoxybenzoyl chloride (300 g, 1.76 moles) in THF (400 ml) was added. The mixt was stirred overnight and extd (Et₂O). The exts were dried (MgSO₄), concd, and used crude. A mixt of LAH (114 g, 3.0 moles) and THF (1.5 l.) was heated to 30–40° under N₂, and a soln of the crude *m*-methoxybenzoic acid 1-methylhydrazide in THF (300 ml) was added dropwise. The H₂ evoln was monitored, ¹⁰ and the mixt was refluxed overnight, cooled under N₂, and worked up as in I to yield 9, 158 g (47%). See Table I for physical data. The yields in Table I are based on the starting aryl carboxylic acid or acid chloride if commercial.

Synthesis and Hypotensive Activity of Benzamidopiperidylethylindoles¹

J. L. Archibald,* B. J. Alps, J. F. Cavalla, and J. L. Jackson

John Wyeth and Brother Limited, Taplow, Maidenhead, Berkshire, England

Received March 12, 1971

The synthesis and hypotensive activity of a series of indole piperidine amides are described. One member of the series—3-[2(4-benzamidopiperid-1-yl)ethyl]indole (indoramin) (**35**)—has undergone intensive pharma-cological investigation. The sustained hypotensive action of **35** is believed to be due to a combination of local anesthetic and α -receptor blocking properties.

A continuing interest in indole derivatives incorporating a tryptamine residue as potential antihypertensive agents stemmed from our work with 1,4-bis(indolylethyl)piperidines.² In that series, the indolylethyl moiety attached to the piperidine 4 position was not an essential feature for retention of antihypertensive activity. It could, for instance, be replaced without detriment by a 3-carbethoxy-2,4-dimethylpyrrol-ö-ylethyl group.³

We decided to retain the indolylethylpiperidine moiety of the earlier series while varying the 4 substituent of the piperidine ring, concentrating in particular on amino derivatives, which had received little attention in the past. It was soon discovered that the 4benzamido derivative **35** (indoramin) was a potent hypotensive agent. Detailed pharmacological investigation of **35** has since revealed a combination of properties that seems likely to be advantageous in the treatment of cardiovascular disease in man.⁴⁻⁶

This compound then became the prototype for an extensive synthetic program designed to investigate structure-activity relationships and to optimize activity.

⁽⁴⁾ B. J. Alps, J. L. Archibald, E. S. Johnson, and A. B. Wilson, Cardiovasc. Res., 62 (1970).

⁽¹⁾ Presented in part at the IV International Congress of Medicinal Chemistry, Clermont-Ferrand, France. Sept 1968. J. L. Archibald, *Chim. Ther.*. **3**, 397 (1968).

⁽²⁾ J. L. Archibald, T. Baum, and S. J. Childress, J. Med. Chem., 13, 138 (1970).

⁽³⁾ J. L. Archibald, J. Heterocycl. Chem., 3, 409 (1966).

⁽⁵⁾ B. J. Alps, E. S. Johnson, and A. B. Wilson, Brit. J. Pharmacol., 40, 151P (1970).

⁽⁶⁾ B. J. Alps, M. Hill, E. S. Johnson, and A. B. Wilson, *ibid.*, **40**, 153P (1970).

^a Anal. were obtd for the elements C, H, Br.

					TABLE II				
			R ₃		CH ₂ CH ₂ N R ₂	$\mathbf{R}_{\mathrm{NHR}_{4}}$			
Compd	\mathbf{R}_2	Rı	R4	Posn of NHR₄	Crystn solvent	Mp. °C	% yield	Formula	Hypotensive activity ^a
16	Н	Н	COCH ₃	4	MeCN	193 - 195	56	$C_{17}H_{21}N_3O$	$+++_{b,c}$
17	CH_3	н	COCH ₃	4	H ₂ O–EtOH	225-226	71	$C_{18}H_{23}N_{3}O$	$+++^{b,d}$
18	CH_3	OCH_3	COCH3	4	MeCN	176 - 178	57	$C_{19}H_{25}N_3O_2$	$+^{d}$
19	Н	н	COC ⁶ H ²	4	$H_2O-EtOH$	209 - 211	$9\dot{3}$	$C_{22}H_{23}N_3O$	+ to ++°
20	Н	н	COC_6H_5	3	MeCN	180 - 182	86	$\mathrm{C}_{22}\mathrm{H}_{23}\mathrm{N}_{3}\mathrm{O}$	+°
21	Н	н	COC_6H_4Cl-p	4	DMSO	228 - 230	37	$C_{22}H_{22}ClN_3O$	$+++^{b,c}$
22	н	н	COC6H4CH3-0	4	MeCN	187 - 189	65	$\mathrm{C}_{23}\mathrm{H}_{25}\mathrm{N}_{3}\mathrm{O}$	+°
23	н	н	$COCH(C_6H_5)_2$	4	EtOH	197 - 198	83	$\mathrm{C}_{29}\mathrm{H}_{29}\mathrm{N}_{3}\mathrm{O}$	÷۹
24	н	н	$\rm CO_2 CH_2 C_6 H_5$	4	EtOH	162 - 164	69	$C_{23}H_{25}N_{3}O_{2}$	+°

^a Falls in blood pressure were < 20 mm, +; 20-35 mm, ++; 35-50 mm, +++; at a dose of 5 mg/kg, iv. ^b Effect obtained at high doses only (10-20 mg/kg, iv). ^c Acute ip LD₅₀ in mice >400 mg/kg. ^d Approx ip LD₅₀ in mice 127-400 mg/kg.

A number of synthetic approaches were developed to meet various objectives, depending, for instance, on which part of the molecule required systematic alteration. Scheme I depicts most of the major synthetic routes employed and is restricted, for clarity, to the synthesis of **35** itself. The original route to **35** involved quaternization of 4-benzamidopyridine with $3 \cdot (2 \cdot$ bromoethyl)indole, followed by Raney Ni catalyzed reduction. This proved satisfactory only on a small scale owing to the insolubility of the quaternary salt 8. In an alternative two-stage process, NaBH₄ reduction of 8 gave the tetrahydropyridine 19 in excellent yield, but catalytic reduction of **19** was complicated by elimination of benzamide with resultant erratic yields of **35**. Quaternary salts and tetrahydropyridines prepared in this way are listed in Tables I and II. 3-Benzamido compounds were prepared in the same way as the 4 isomers.

Approaches which progressed through aminopiperidine intermediates **25–29** were investigated next, since these enable easy variation of the amide portion of **35**. The amine **25** was readily obtained on a small scale by reduction of the quaternary salt **1**, but again insolubility prevented satisfactory large scale operation. The acetamido quaternary salt **5**, however, was more soluble and less resistant to reduction. The acetamidopiperidine **30**⁷ was hydrolyzed to the amine **25** which was reacylated with BzCl as well as with a large number of other acid chlorides (method F). The amine **25** was alkylated on the indole N with Me or benzyl halide to give either **27** or the corresponding 1-benzylindolamine. Amines substituted in the indole 2 and/or 5 positions or in the chain linking the indole and piperidine rings were also prepared. The amine **28** was obtained by hydrogenolysis of the N,O-dibenzyl compound **85**.

The most satisfactory approach to the large scale preparation of **35** involved alkylation of 4-benzamidopiperidine (**86**, Scheme I). This was prepared by hy-

(7) B. L. Zenitz. U. S. Patent 3,238,215 (1966).

						$\mathbf{T}_{\mathbf{z}}$	ABLE III					
Compd	R 1	R ₂	I R3	R4	А	Posn of NHR4	Crystn solvent	Mp. °C	% yield	Method	Formula	Hypotensive activity ^a
25	Н	Н	Н	н	C_2H_4	4	MeCN	106 - 110	78	А, В	$C_{15}H_{21}N_3 \cdot H_2O$	$+++{}^{b\cdot i}$
26	Н	CH3	Н	Н	C_2H_4	4	EtOH-H ₂ O	186 - 188	21	Α	$\mathrm{C_{16}H_{23}N_{3}\cdot C_{2}H_{2}O_{4}{}^{c}}$	++'.*
27	CH_3	Н	Н	Н	C_2H_4	4	MeCN	102 - 104	73	С	$C_{16}H_{23}N_3 \cdot H_2O$	$+^{i}$
28	Н	Н	OH	H	C_2H_4	4		180	93	$\mathbf{D}(\mathbf{i}\mathbf{i}\mathbf{i})$	$\mathrm{C_{13}H_{21}N_{3}O} \cdot 2\mathrm{HCl} \cdot \\$	+++•.i
											0.5H ₂ O	
29	Н	Н	Н	н	$\rm COCH_2$	4	CHCl_3	203 - 205	40	Α	$C_{15}H_{19}N_{3}O$	$++^{i}$
30	Н	Н	Н	COCH ₃	C_2H_4	4	MeCN	167 - 168	70	G	$C_{17}H_{23}N_{3}O$	$++^i$
31	Н	CH ₃	Н	COCH ₃	C_2H_4	4	EtOH-H ₂ O	83-85	51	G	$C_{18}H_{25}N_{3}O \cdot 3H_{2}O$	+++i
32	Н	CH ₃	OCH ₃	$\rm COCH_3$	C_2H_4	4	EtOAc	193 - 195	70	\mathbf{E}	$C_{19}H_{27}N_{3}O_{2}$	+i
33	Н	Н	Н	$CO(CH_2)_2CH_3$	C_2H_4	4	EtOAc	148 - 150	53	\mathbf{F}	$C_{19}H_{27}N_{3}O$	+ i
34	Н	CH_3	Н	$CO(CH_2)_2CH_3$	C_2H_4	4	EtOH-H ₂ O	100 - 103	29	F	$C_{20}H_{29}N_3O \cdot H_2O$	+++ ^d ·i
35	Н	Н	Н	COC ⁶ H ²	C_2H_4	4	EtOH-H ₂ O	208 - 210	92	E, F, G, H, I	$C_{22}H_{25}N_{3}O$	$+++{}^{h-i}$
36	н	н	Н	COC ₆ H ₅	C_2H_4	3	EtOH-H ₂ O	135 - 140	39	G	$C_{22}H_{25}N_{3}O$	+i
37	Н	Н	Н	COC6H4CH3-0	C_2H_4	4	MeCN	186 - 189	62	F	$C_{23}H_{27}N_{3}O$	+++i
38	Н	Н	Н	COC ₆ H ₄ CH ₃ -m	C_2H_4	4	MeCN	172 - 174	56	F	$C_{23}H_{27}N_3O$	+i
39	Н	н	н	COC H4CH3-p	C_2H_4	4	EtOH-H ₂ O	200 - 202	55	F	$C_{23}H_{27}N_{3}O$	+++e.i
40	Н	Н	Н	COC H OCH -0	C_2H_4	4	MeCN	152 - 154	50	\mathbf{F}	$C_{23}H_{27}N_{3}O_{2}$	++'
41	Н	Н	Н	COC ₆ H ₄ OCH ₃ -m	C ₂ H ₄	4	MeCN	149 - 150	75	F	$C_{23}H_{27}N_3O_2$	+++
42	Н	H	Н	COC ₆ H ₄ OCH ₃ -p	C_2H_4	4	EtOH-H ₂ O	290-292	54	F	$C_{23}H_{27}N_3O_2 \cdot HCl \cdot H_2O$	$+^i$
43	Н	Н	Н	COC ₆ H ₄ Cl-0	C_2H_4	4	MeCN	163 - 164	38	F	$C_{22}H_{24}ClN_3O$	+++i
44	Н	Н	Н	COC ₆ H ₄ Cl-p	C ₉ H ₄	4	EtOH	230 - 232	25	G	C ₂₂ H ₂₄ ClN ₃ O	++i
45	H	H	Н	$COC_{6}H_{4}CF_{3}-m$	C ₂ H ₄	4	EtOH-H ₂ O	186-188	56	F	$C_{23}H_{24}F_3N_3O$	+1
46	Η	Н	Η	$\operatorname{COC}_6\operatorname{H}_3(2,6-\operatorname{Cl}_2)$	C_2H_4	4	EtOH	297-301	59	F	$C_{22}H_{23}Cl_2N_3O \cdot HCl \cdot 0.25H_2O$	$+$ to $++^i$
47	Н	Н	Н	$\mathrm{COC}_6\mathrm{H}_3(2,6\text{-}(\mathrm{OCH}_3)_2)$	C_2H_4	4	EtOH-Et ₂ O	243-246	43	F	$C_{24}H_{29}N_3O_3 \cdot HCl \cdot$	$++^{d,i}$
48	Н	Н	Н	$COC_6H_3(\mathbf{3,4-}(OCH_3)_2)$	C_2H_4	4	EtOH	271-273	60	F	$C_{24}H_{29}N_3O_3 \cdot HCl \cdot 0.25H_2O$	$++^{i}$
49	н	н	н	$COC_{e}H_{2}(34.5-(OCH_{2})_{2})$	C₀H₄	4	EtOH-H ₂ O	105-108	79	F	CasHanNaOr HaO	+ i
50	H	н	Ĥ	Pineropyl	C.H.	4	EtOH-H ₂ O	189-190	58	F	CarHaxN2Ox	+++i
51	н	H	H	COCeHeCeHern	C ₂ H	4	EtOH	271 - 272	56	F	$C_{23}H_{23}N_{2}O \cdot 0$ 25H ₂ O	+i
52	н	н	н	COC H CO H-0	C.H.	4	EtOH-H ₄ O	165-170	55	Ň	$C_{22}H_{22}H_{23}O_{2} \cdot H_{2}O$	+ i
53	H	Ĥ	н	COCH	C.H.	4	MeCN	165-168	58	F	Ca2HarN2O	++i
54	Ĥ	H	H	COCHOCall	C ₂ H	4	EtOH	238-240	52	F	$C_{22}H_{27}N_{2}O_{2}\cdot HC$	+*
55	H	H	H	COCH ₂ CH ₂ C ₂ H ₂	C.H.	4	EtOH	265-268	35	F	CarHanN 2O · HC]	+i
56	н	н	H	COC-Hu	C.H.	4	EtOH-H ₀ O	182-184	58	Ĥ	$C_{aa}H_{aa}N_{a}O$	+ <i>i</i>
57	н	н	н	Adamantovl	C ₁ H	4	EtOH 1120	295-299	58	F	$C_{32}H_{31}N_{3}O \cdot HC$	++*
58	н	н	н	CO(indol-3-vl)	C.H.	4	MeaCO-HaO	242-244	13	F	CarHarN.O	++i
50	н	н	н	CO(2-furvl)	C.H.	4	EtOH-HO	146148	81	F	CarHanNaOa	++i
60	н	н	н	$COCH(C_{e}H_{e})$	C.H.	4	EtOH-H ₀ O	160 - 162	56	л Я	CanHaiNaO	+ 1
61	н	CH.	н	COC-H	C ₂ H ₄	4	EtOH-H ₂ O	209-211	51	F	CarHarN-O	+++
62	н	CH.	н	COC-H-Cl-2	C ₂ H ₄	4	EtOH-Et.O	243-245	34	F	$C_{23}H_{27}H_{3}O$	1 1 + i
63	н	CH.	и и	COC-H-OCH-m	$C_2\Pi_4$	-1 -1	EtOH EtOH	112-114	55	F	CarHaeNaOaa HaO	++++ 0.1
64	н	CH	0074	COC.H.	C.H	т Л	EtOA	180-191	50	F	Ca.HanNaO-	
65	CH	UП3 Ц	H UCH3	СОС.н.	CaH	т Л	EtOH_H.O	178_170	61	F	CarHanNaO	1 ++i
66	CH	н	н	COC.H.Cl.~	C.H.	т Л	EtOH	212-214	71	F	CarHarCIN-O	+ + + e-i
67	CH-	н	н	COC.H.CH»	C _a H.		EtOH	198-199	71	F	Ca.HasN.O	, , , , ∔i
V I	U113		11	COCGLI4CII3 P	2==4</td <td>-</td> <td>AJUO IK</td> <td>1007 100</td> <td>1.4</td> <td>*</td> <td>~241 231 3</td> <td>1</td>	-	AJUO IK	1007 100	1.4	*	~241 231 3	1

68	CH_3	Н	Η	COC ₆ H ₄ OCH ₃ -p	C_2H_4	4	EtOH	198 - 199	74	F	$C_{24}H_{29}N_{3}O_{2}$	+
69	CH ₂ C ₆ H ₅	Η	Η	COC ₆ H ₅	C_2H_4	4	EtOH	152 - 153	35	F	$C_{29}H_{31}N_3O$	<i>i</i> +
70	$CH_2C_6H_4$	Η	Η	COC_6H_4Cl-p	C_2H_4	4	EtOH	193 - 194	57	F	C29H30CIN3O	++++
11	CH ₂ C ₆ H ₅	Н	Η	COC ₆ H ₄ OCH ₃ -p	C_2H_4	4	EtOH	191 - 192	62	ĿЧ	C ₃₀ H ₃₃ N ₃ O ₂	·*
72	Н	Η	HO	COC6Hs	C_2H_4	4	EtOH-H ₂ O	246 - 248	68	ŕч	C22H25N3O2.0.25H2O	, + +
73	Н	Η	OCH_3	COC ₆ H ₅	C_2H_4	4	MeCN	174	52	I	$\mathrm{C}_{23}\mathrm{H}_{27}\mathrm{N}_{3}\mathrm{O}_{2}$	$++_{1,i}$
74	Н	Η	Н	COC6Hs	$COCH_2$	4	EtOH	205 - 207	94	F, H	$C_{22}H_{23}N_{3}O_{2}$	$+++e^{i}$
75	Η	Η	Н	COC_6H_4CI-p	$COCH_2$	4	EtOH	231 - 233	83	н	$C_{22}H_{22}CIN_3O_2$, +
76	Η	Η	Η	COC ₆ H ₄ OCH ₃ -p	$COCH_2$	4	EtOH-H ₂ O	227 - 229	74	F	$\mathrm{C}_{23}\mathrm{H}_{25}\mathrm{N}_{3}\mathrm{O}_{3}$, +
77	CH3	Η	Η	COC ₆ H ₅	COCH2	4	EtOH-Et ₂ O	273 - 277	35	Η	$C_{23}H_{25}N_3O_2\cdot HCl$	مىر
78	Η	Η	Η	COC ₆ H ₅	CHOHCH2	4	EtOH	206 - 207	57	Ĺ	$\mathrm{C}_{22}\mathrm{H}_{25}\mathrm{N}_3\mathrm{O}_2$	$++t_{i}$
79	Η	Η	Н	COC ₆ H ₆	COCO	4	EtOAc	266-268	48	D(i)	$\mathrm{C}_{22}\mathrm{H}_{21}\mathrm{N}_3\mathrm{O}_3$	*. +
80	Η	Н	OCH2-	COC ₆ H ₅	COCO	4	DMF-H ₂ O	264	67	D(i)	C29H27N3O4	
			C_6H_5									
81	Н	Η	Н	COC_6H_5	COCH ₂ CH ₄	4	MeCN	226 - 229	42	K	$C_{23}H_{25}N_3O_2$	++1.1
82	Н	Η	Н	COC ₆ H ₅	$(CH_2)_3$	4	EtOH-H ₂ O	179 - 180	69	ſ	$\mathrm{C}_{23}\mathrm{H}_{27}\mathrm{N}_{5}\mathrm{O}$	<i>i</i> +
83	Н	Н	Η	COC ₆ H ₃	CH_{2}	4	EtOH	219 - 222	45	К	C ₂₁ H ₂₃ N ₅ O · HCl	++,1,1
84	Η	Η	Н	$CH_2C_6H_5$	$C_2 \Pi_4$	4	C_6H_6	132 - 134	20	D(ii)	$\mathrm{C}_{22}\mathrm{H}_{27}\mathrm{N}_3$	<i>i</i> +
85	Н	Η	0CH2-	CH ₂ C ₆ H ₅	C_2H_4	4	EtOH	210	85	D(ii)	$C_{29}H_{33}N_3O\cdot 2HCI\cdot$	
			$C_{6}H_{5}$								$0.5H_2O$	
^a Falls only (10 in ^k Ar	i in blood pre -20 mg/kg, iv mrox LDs, in	ssure we v). / F mice 40	ere <20 mm atal. " Ana 127 mo/ke	1, +; 20-35 mm, ++; 35- al. for C, H, Cl. ^h Acute L o in	-50 mm, +++; : ,D ₅₀ in rats: 1800 r	at a dosi mg/kg, c	e of 5 mg/kg iv. ^b stally; 500 mg/kg i	Toxic. ^e C: ip. ⁱ Acute Ll	caled, 62 D ₃₀ in mi	2.2; found, 61.7. ce >400 mg/kg if	^{<i>d</i>} Transient. ^{<i>e</i>} Effect obt. ^{<i>j</i>} Approx LD ₅₀ in mice 1	id at high dosse 127–400 mg/kg
	and the second second second		10.00	5 tr.								

Hypotensive Benzamidopiperidylethylindoles

drogenolysis of 1-benzyl-4-benzamidopiperidine⁸ or from 4-benzamidopyridine, either by quaternization with PhCH₂Cl, followed by sequential NaBH₄ and catalytic reduction or, alternatively, by reduction of 4benzamidopyridine in Ac₂O to give 1-acetyl-4-benzamidopiperidine which was selectively hydrolyzed to **86**. Alkylation of **86** with a variety of indolylalkyl halides or tosylates provided products in which the length and nature of the linking chain and substitution in the indole ring were altered. Acylation of **86** with the appropriate indole-3-glyoxylyl chloride provided the glyoxylamides **79** and **80**, the three carbonyl groups of the latter being reduced by LAH to give **85** as an intermediate to **28** and **72**.

Mannich reactions with 86 and indole and with 86 and 3-acetylindole gave products 83 and 81, while a Mannich reaction with 86 and propiolaldehyde diethyl acetal provided 87 which was readily reduced to 88 (Scheme I). Fischer cyclization occurred when 88 was allowed to react with *p*-methoxyphenylhydrazine to give a good yield of 73. When phenylhydrazine was used, only a low yield of 35 was obtained.

Biological Activity.—An evaluation of the hypotensive actions of members of the series was made in dialurethane-anesthetized (0.7 ml/kg, ip) normotensive rats. Results are shown in Tables II and III. Some

compounds were also examined for antihypertensive activity in conscious renal hypertensive rats using oral doses of 20-40 mg/kg. Systolic blood pressure was measured by an indirect tail-cuff technique. Results were in general agreement with those obtained in anesthetized normotensive rats when blood pressure was measured directly. Compound 35 was selected for further evaluation of effect on general hemodynamics in sodium pentobarbital anesthetized cats (30 mg/kg iv). Low dosages (0.1-3.2 mg/kg iv) induced significant sustained decreases in aortic systolic and diastolic pressures (>40 mm) compared with measurements in control animals. The compound was devoid of an adrenergic β -receptor blocking action on the heart, but was found to possess local anesthetic membrane stabilizing properties, and to exert an adrenergic α receptor blocking action. In common with many compounds in the series it was found to cause potent competitive antagonism of histamine.

The sustained hypotensive action of **35** could be accounted for by combined cardioinhibitory actions (*i.e.*, decreased myocardial contractile force, bradycardia, and decreased cardiac output), by virtue of its membrane stabilizing properties on the heart, and decreased peripheral resistance due to partial adrenergic α -receptor blockade of vasoconstrictor tone.

Structure-Activity Relationship.—Structural features necessary for a high level of hypotensive activity may be summarized as follows. The 4-benzamido group is necessary, except in very few examples where there is a 2 substituent on the indole ring and/or a double bond in the piperidine ring, e.g., 16, 17, and 31. No

(8) N. J. Harper and C. F. Chignell, J. Med. Chem., 7, 729 (1964).

simple relationship exists between substitution in the benzene ring and degree of activity; furthermore the effect of such substitution may be markedly altered by substitution elsewhere in the molecule. Thus para substitution of CH₃ does not greatly reduce activity (**39**), but $p \cdot OCH_3$ only retains high activity when there is also an indole-2-CH₃ (**63**). *m*-OCH₃ does not reduce activity (**41**) nor does o-CH₃ (**37**) or o-Cl (**43**). Multisubstitution reduces activity except for **50**.

Substituents on the indole N generally decrease activity, but as previously exemplified may counteract an undesirable substituent in the benzene ring, e.g., 44 and 66. Indole 2 substituents have a variable effect, whereas 5 substituents are generally less desirable. Alteration of the ethylene linkage between the indole and piperidine rings reduces activity, except for 74.

The quaternary compounds listed in Table I did not produce a potentially useful lowering of blood pressure except at high doses. Biological results are therefore not included in Table I.

Experimental Section⁹

Benzamidopyridines were either known or were prepd by standard procedures.

4-Benzamidopiperidine (86).—1-Benzyl-4-benzamidopiperidine⁸ in EtOH was hydrogenated in the presence of 10% Pd/C at 50° and 3.25 kg/cm². The product (mp 136–137°) was recrysted from EtOAc. The same product was obtd by catalytic reduction of 4-benzamidopyridine in Ac₂O, followed by hydrolysis of the resulting 1-acetyl-4-benzamidopiperidine, and by quaternization of 4-benzamidopyridine with PhCH₂Cl, followed by NaBH₄ reduction of the quaternary salt, and catalytic reduction of the resulting 1-benzyl-1,2,5,6-tetrahydropyridine.

Quaternary Salts (Table I). 4-Benzamido-1-[2-(3-indolyl)ethylpyridinium Bromide (8).—A soln of 4-benzamidopyridine (1.98 g) and 3-(2-bromoethyl)indole (2.24 g) in EtOH (15 ml) was refluxed for 2 hr, and the cryst product $(3.13 \text{ g}, \text{mp } 264-266^\circ)$ was collected by filtration from the hot reaction mixt. Recrystn gave the hydrate.

4-Acetamido-1-[2-(5-methoxy-2-methylindol-3-yl)ethyl]pyridinium Bromide (7).-5-Methoxy-2-methylindole-3-acetic acid $(50\ g)\ \mathrm{in}\ \mathrm{THF}\ (400\ \mathrm{ml})$ was added dropwise to a stirred suspension of LAH (50 g) in THF (800 ml). The mixt was refluxed 1 hr, then H_2O (150 ml) was added dropwise, and the inorg material was filtered off and washed well by suspending in Et₂O. Evapn of the combined Et₂O phases provided 3-(2-hydroxyethyl)-5methoxy-2-methylindole as a cryst solid (45.3 g, 96.7%), mp 98-101°. This alcohol (45.3 g) was added as quickly as possible to boiling 48% HBr (450 ml). One minute later the soln was poured onto ice (1 kg) and extd with Et₂O. The exts were washed twice with satd NaHCO3 soln, dried (K2CO3), and evapd to provide 3-(2-bromoethyl)-5-methoxy-2-methylindole as an oil (56.3 g). This oil was dissolved in MeCN (22.5 ml) and a solu of 4-acetamidopyridine (28.4 g) in MeCN (120 ml) was added. After 3 hr at room temp the cryst product (58.7 g, 81.7%) was collected.

Tetrahydropyridines (Table II). 3-[2-(4-Benzamido-1,2,5,6-tetrahydropyrid-1-yl)ethyl]indole (19).—To a stirred suspension of 4-benzamido-1-[2-(3-indolyl)ethyl]pyridinium bromide (8) (2.0 g) in MeOH (100 ml) was added NaBH₄ (6.0 g) portionwise over 30 min. Stirring was contd 1 hr after the addn, and the ppt was collected, washed (MeOH), and dried to give the crude product (1.55 g), mp 205-207°. Recrystn from MeOH raised the mp to $209-211^\circ$.

Piperidines (Table III). 3-[2-(4-Aminopiperid-1-yl)ethyl]indole (25). Method A.—4-Amino-1-[2-(3-indolyl)ethyl]pyridinium bromide (1) (3.18 g) in 90% EtOH (300 ml) contg Et₃N (1.0 g) and W-7 Raney Ni (*ca.* 3 g) was hydrogenated at 80° and 56.25 kg/cm² 18 hr. The catalyst was filtered off and the filtrate was evapd. The residue was shaken with 2 N NaOH until it crystd to give the hydrate (1.94 g).

Method B.--3-[2-(4-Acetamidopiperid-1-yl)ethyl] indole (30) (43.0 g) was dissolved in 2 N HCl (430 ml) and refluxed for 2.5 hr. The reaction mixt was cooled, filtered, and basified with 10 N NaOH to give the hydrate (36.4 g).

3-[2-(4-Aminopiperid-1-yl)ethyl]-1-methylindole (27). Method C.—3-[2-(4-Aminopiperid-1-yl)ethyl]indole (25) (13.05 g) was added portionwise to NaNH₂ in liq NH₃ (from 2.5 g of Na and *ca.* 500 ml of NH₃). After stirring 1 hr, CH₃I (7.8 g) in dry Et₂O (100 ml) was added dropwise. Stirring was contd at room temp until NH₃ had evapd; then H₂O (100 ml) was added dropwise to the resulting solid was collected and recrystd from MeCN contg 1% of H₂O to give the hydrate (10.16 g).

⁽⁹⁾ Melting points are uncor. Ir spectra supporting the assigned structures were obtd for all compounds. C. H. and N analysis were obtd for all compounds except where noted in the tables and were within $\pm 0.4\%$ of the theor values except where noted in Table III. Nmr spectra of 15 representative compounds fully supported the assigned structures.

4-Benzamido-1-(5-benzyloxyindole-3-glyoxyloyl)piperidine (80). Method D(i).—5-Benzyloxyindole-3-glyoxylyl chloride¹⁰ (23.2 g) was added portionwise to a stirred soln of 4-benzamidopiperidine (30.2 g) in dry 1,2-dimethoxyethane. After 1 hr the solid was collected and suspended in H₂O (1 l.) for 1 hr. The product (34.49 g) was filtered off, washed (H₂O), and dried. An anal. sample was recrystd from DMF-2H₂O.

5-Benzyloxy-3-[2-(4-benzylaminopiperid-1-yl)ethyl]indole (85). Method D(ii).—Compd 80 (33.88 g) was added portionwise to a stirred, refluxing suspension of LAH (20 g) in dry THF. Stirring and refluxing were contd for 4 hr, then H_2O (20 ml) and 2 N NaOH (40 ml) were added dropwise. Filtration and evapu of the filtrate plus washings gave an oil which was dissolved in hot EtOH and acidified with dry HCl. The product crystd on cooling as the dihydrochloride, hemihydrate (31.03 g).

3-[2-(4-Aminopiperid-1-y])ethy] -5-hydroxyindole (28). Method D(iii).—Compd 85 (10.0 g) in H₂O (100 ml) and MeOH (100 ml) was hydrogenated in the presence of 5% Pd/C (1.0 g) at 50° and 3.52 kg/cm² for 5 hr. Evapn of the filtered soln gave the product as a pink foam (6.29 g) which analyzed correctly for the dihydrochloride, hemihydrate.

3-[2-(4-Acetamidopiperid-1-yl)ethyl]-5-methoxy-2-methylindole (32). Method E.--3-[2-(4-Acetamido-1,2,5,6-tetrahydropyrid-1-yl)ethyl]-5-methoxy-2-methylindole (18) (4.66 g) in 50% aq AcOH (50 ml) was hydrogenated for 18 hr at 3.52 kg/cm² and 50° in the presence of PtO₂ (500 mg). After filtering off the catalyst and evapg the filtrate, the residue was dissolved in H₂O and basified with K₂CO₃. Extn with CHCl₃ and evapn of the dried exts gave a foam which was chromatogd on basic alumina. The purified product was crystd from EtOAc as colorless prisms (3.27 g).

3-12-(4-Benzamidopiperid-1-yl)ethyl]indole (35). Method F. --3-[2-(4-Aminopiperid-1-yl)ethyl]indole (25) (2.61 g) in dry CH₂Cl₂ (100 ml) was stirred with K₂CO₃ (2.76 g) in H₂O (50 ml) at 5° while BzCl (1.69 g) in CH₂Cl₂ (20 ml) was added during 10 min. The mixt was kept at 5° for 18 hr, then the product was filtered off, washed, and dried, giving 2.95 g, 85%. An anal. sample was recrystd from EtOH-H₂O.

Method G.—4-Benzamido-1-[2-(3-indolyl)ethyl]pyridinium bromide (8) (3.0 g) in 91% EtOH (300 ml) contg Et₃N (0.8 g) was hydrogenated in the presence of freshly prepared W-7 Raney Ni catalyst (ca. 3 g) at 28.12 kg/cm² and 50° for 4 hr. After filtering off the catalyst, the filtrate was evapd and the residue was shaken with CHCl₃ and 2 N NaOH. The resulting insol material (1.61 g, mp 203–206°) was collected and dried. Recrystn from EtOH gave the product (1.34 g), as colorless needles.

Method H.—A mixt of 3-(2-bromoethyl)indole (200 mg), 4benzamidopiperidine (200 mg), and Et₃N (108 mg) in dry DMF (5 ml) was stirred at room temp overnight. H₂O (10 ml) was slowly added whereupon the product (225 mg, 72.5%) crystd. The yield was increased (287 mg, 92.5%) when an extra equiv of 4-benzamidopiperidine was used in place of the Et₃N. The base (215 mg) in MeOH (12 ml) was made just acid with dry HCl and the boiling MeOH was gradually replaced with EtOAc until the dist temp reached 68°, at which point crystn occurred to give the hydrochloride (227 mg), mp 230-232°. Recrystn from MeOH*i*-PrOH gave a different cryst modification, mp 258-260°.

5-Methoxy-3-[2-(4-benzamidopiperid-1-yl)ethyl]indole (73). Method I(i).--4-Benzamidopiperidine (62 g) was added to a stirred suspension of cupric acetate (1.1 g) and paraformaldehyde (9.5 g) in dry dioxane (300 ml). Propiolaldehyde diethyl acetal (38.6 g) was then added and stirring was contd at 80° under N₂ for 24 hr. The hot reaction mixt was filtered and the filtrate was evapd. Recrystn of the solid residue from a mixt of EtOAc and petr ether (bp 60-80°) gave 4-benzamido-1-(4,4diethoxybut-2-ynyl)piperidine (87) (84.6 g, 82%), mp 130°.

Method I(ii).—The product of part i (70 g) in EtOH (1 l.) was hydrogenated in the presence of 10% Pd/C (7 g) at 3.52 kg/cm² for 0.5 hr. Evapn of the filtrate after removal of the catalyst and recrystn of the residue from petr ether gave 4-benzamido-1-(4,4diethoxybutyl)piperidine (88) (61.29 g, 86.5%), mp 95°.

Method I(iii).—The product of part ii (3.48 g) was added portionwise to a soln of *p*-methoxyphenylhydrazine \cdot HCl (1.75 g) in 25% aq AcOH (15 ml) with stirring at 80° which was contd for 2.5 hr. The cooled mixt was dild with ice water, basified with K₂CO₃, and extd with CHCl₃. Evapn of the combined and dried exts gave a brown oil. Crystn from MeCN gave 5-methoxy-3-[2-(4-benzamidopiperid-1-yl)ethyl]indole (73) (1.95 g).

3-[3-(4-Benzamidopiperid-1-yl)propyl]indole (82). Method J.—A mixt of 4-benzamidopiperidine (1.02 g), 3-(3-hydroxypropyl)indole tosylate (1.73 g), and K_2CO_3 (1.38 g) in *i*-PrOH (25 ml) was stirred and refluxed for 24 hr. The filtrate from the hot reaction mixt crystd on cooling to give the crude product (1.83 g, 100%), mp 174–178°. Recrystn from EtOH-H₂O gave the anal. pure product. **3-[3-(4-Benzamidopiperid-1-yl)-1-oxopropyl]indole** (81).

3-[3-(4-Benzamidopiperid-1-yl)-1-oxopropyl]indole (81). **Method K.**—A mixt of 3-acetylindole (1.57 g), 4-benzamidopiperidine (2.0 g), 40% aq CH₂O (1.0 g), and AcOH (0.8 g) in EtOH (25 ml) was stirred for 4 hr. The product was filtered off and recrystd from MeCN to give colorless needles (1.53 g).

3-[2-(4-Benzamidopiperid-1-yl)-1-hydroxyethyl]indole (78). Method L.--3-[2-(4-Benzamidopiperid-1-yl)-1-oxoethyl]indole (74) (0.9 g) in MeOH (50 ml) was treated dropwise with NaBH₄ (1.0 g) in H₂O (9 ml) and 2 N NaOH (1 ml). The mixt was stirred under reflux for 2 hr, cooled, and evapd. The residue was shurried with H₂O and the resulting crystals were collected and recryst from EtOH to give the product (511 mg) as colorless needles.

3-[2-(4-[2-Carboxybenzamido]piperid-1-yl)ethyl]indole (52). Method M.—3-[2-(4-Aminopiperid-1-yl)ethyl]indole (25) (1.0 g) in CHCl₃ (50 ml) was stirred at 40° and phthalic anhydride (570 mg) was added portiouwise. The resulting solid was collected after 2 hr, and recrystd from EtOH-H₂O to give the hydrate (855 mg).

Acknowledgment.—The authors express their appreciation to Drs. E. S. Johnson and A. B. Wilson for their invaluable advice and encouragement during the biological evaluation of these compounds.

⁽¹⁰⁾ M. E. Speeter and W. C. Anthony, J. Amer. Chem. Soc., 76, 6208 (1954).